Solvability of norm equations over cyclic number fields of prime degree

نویسنده

  • Vincenzo Acciaro
چکیده

Let L = Q[α] be an abelian number field of prime degree q, and let a be a nonzero rational number. We describe an algorithm which takes as input a and the minimal polynomial of α over Q, and determines if a is a norm of an element of L. We show that, if we ignore the time needed to obtain a complete factorization of a and a complete factorization of the discriminant of α, then the algorithm runs in time polynomial in the size of the input. As an application, we give an algorithm to test if a cyclic algebra A = (E, σ, a) over Q is a division algebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Local Artin Maps, and Solvability of Norm Equations

Let L = K() be an abelian extension of degree n of a number eld K, given by the minimal polynomial of over K. We describe an algorithm for computing the local Artin map associated to the extension L=K at a nite or innnite prime v of K. We apply this algorithm to decide if a nonzero a 2 K is a norm from L, assuming that L=K is cyclic.

متن کامل

Norm-euclidean Cyclic Fields of Prime Degree

Let K be a cyclic number field of prime degree `. Heilbronn showed that for a given ` there are only finitely many such fields that are normEuclidean. In the case of ` = 2 all such norm-Euclidean fields have been identified, but for ` 6= 2, little else is known. We give the first upper bounds on the discriminants of such fields when ` > 2. Our methods lead to a simple algorithm which allows one...

متن کامل

Positive-additive functional equations in non-Archimedean $C^*$-‎algebras

‎Hensel [K‎. ‎Hensel‎, ‎Deutsch‎. ‎Math‎. ‎Verein‎, ‎{6} (1897), ‎83-88.] discovered the $p$-adic number as a‎ ‎number theoretical analogue of power series in complex analysis‎. ‎Fix ‎a prime number $p$‎. ‎for any nonzero rational number $x$‎, ‎there‎ ‎exists a unique integer $n_x inmathbb{Z}$ such that $x = ‎frac{a}{b}p^{n_x}$‎, ‎where $a$ and $b$ are integers not divisible by ‎$p$‎. ‎Then $|x...

متن کامل

On the Solvability of Systems of Bilinear Equations in Finite Fields

can be solved with a ∈ A, b ∈ B, c ∈ C and d ∈ D. Gyarmati and Sárközy [3] generalized the results on the solvability of equation (1.1) to finite fields. They also study the solvability of other (higher degree) algebraic equations with solutions restricted to “large” subsets of Fq, where Fq denote the finite field of q elements. Using exponential sums, Hart and Iosevich [5] studied similar prob...

متن کامل

Diophantine Equations and Class Numbers

The goals of this paper are to provide: (I ) sufficient conditions, based on the solvability of certain diophantine equations, for the non-triviality of the dass numbers of certain real quadratic fields; (2) sufficient conditions for the divisibility of the class numbers of certain imaginary quadratic fields by a given integer; and (3) necessary and sufficient conditions for an algebraic intege...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 65  شماره 

صفحات  -

تاریخ انتشار 1996